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Abstract
Objective: Develop a Data Mining and Machine Learning methodology for COVID-19

diagnosis. Method: Create diagnostic models, evaluate differences in symptoms between

pandemic waves. Results: Diagnose symptomatic SARS-CoV-2 infection. Conclusion:

Highlight the effectiveness of the methodology in pandemic management.
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Resumo
Objetivo: Desenvolver metodologia de Mineração de Dados e Aprendizado de Máquina

para diagnóstico de COVID-19. Método: Criar modelos de diagnóstico, avaliar diferenças

nos sintomas entre ondas pandêmicas. Resultados: Diagnosticar infecção sintomática

pelo SARS-CoV-2. Conclusão: Destacar a eficácia da metodologia na gestão pandêmica.

Palavras-chave: SARS-CoV-2; COVID-19; Aprendizado de Máquina;
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Resumen
Objetivo: Desarrollar una metodología de Minería de Datos y Aprendizaje Automático para

el diagnóstico de COVID-19. Método: Crear modelos de diagnóstico, evaluar diferencias

en síntomas entre olas pandémica. Resultados: Diagnosticar infección sintomática por

SARS-CoV-2. Conclusión: Destacar la eficacia de la metodología en la gestión

pandémica.

Descriptores: SARS-CoV-2; COVID-19; Aprendizaje Automático;

Introduction
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, was first reported in

Wuhan, Hubei province, China, in 2019 (1). By March 2020, the WHO (World Health

Organization) declared it a global pandemic due to its highly contagious nature and the

emergence of new variants, including mutations in the spike protein (2). Testing became

crucial to curb the spread, particularly among symptomatic individuals or those in contact

with infected individuals. In the absence of tests, many doctors rely on clinical signs and

symptoms for diagnosis, highlighting their importance in disease assessment.

Machine Learning (ML) has seen widespread application across various sectors,

including healthcare, since the mid-20th century (3) with its use intensifying due to the

digital storage of patient data. ML offers numerous advantages in healthcare, allowing the

manipulation of large volumes of variables quickly and safely (4). However, many ML

algorithms are perceived as black boxes, posing challenges for acceptance within the

healthcare domain.

In this context, the objective of this work is to investigate and evaluate

methodologies and models based on ML for the diagnosis of COVID-19, based only on the

signs and symptoms of patients, to assist health professionals that can also be extended

to other outbreaks or pandemic. The main contributions of this paper are: (i) evaluate the

use of ML techniques to infer the diagnosis of COVID-19 considering different waves of

contagion; (ii) increase the quality and explainability of COVID-19 diagnoses, to help
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healthcare professionals decide the best treatment for patients; (iii) indicate the most

prevalent signs and symptoms in the different waves of contagion; (iv) evaluate and

identify the variation of signs and symptoms in the different waves of contagion.

The following paragraphs describe relevant related work found in the literature. In a

study conducted in Jordan (5), an online form was used to collect data for developing a

diagnostic tool for COVID-19 using a Multi-Layer Perceptron (MLP) and Support Vector

Machine (SVM). The attributes used were signs and symptoms, gender and age. The

study also used X-ray images in the inference which provided an accuracy above 90% for

both models. Another study, carried out in England (6), used data from more than one

million participants who took part in the REACT-1 survey on SARS-CoV-2 infection. The

data used were: symptoms, results of the RT-PCR tests, and results of the genetic

analysis of the virus SARS-CoV-2, which were divided into two groups. The LASSO

algorithm was used to perform the analyses. The study obtained 72% of sensitivity and

64% of specificity for the first group and 74% of sensitivity and 64% specificity for the

group with the Alpha variant.

In turn, the study carried out in the United Kingdom (7), used a cell phone application

for users to inform the signs and symptoms after the third day of the first symptom and the

presence of pre-existing diseases. The Hierarchical Gaussian model, Bayesian framework

and Logistic Regression were used. There was a division into groups: health professionals

or not, gender, age, body mass index and date of onset of symptoms. There was no data

equalization, but an attempt was made to reduce the imbalance between negatives and

positives in the database using bootstrapping. The best result was obtained in the groups

of health workers using the hierarchical Gaussian model, achieving a sensitivity of 76%. A

similar study in England(8) used data from the United Kingdom and the United States of

America that were obtained through a cell phone application in which patients reported

symptoms, BMI (body mass index), sex, pre-existing diseases, demographic data and the

result of the RT-PCR test. The Logistic Regression algorithm was used to make the

inferences and the data were not equalized. Instead, the inputs were divided into groups
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by sex, age, and BMI. The study had a mean sensitivity of 65% and mean specificity of

78% for UK data and mean sensitivity of 66% and a mean specificity of 83% for USA data.

Differently from the works presented previously, in the work proposed in this article,

only signs and symptoms described by health professionals and the COVID-19 test results

are used as attributes. Moreover, data were divided and analyzed in waves to assess the

impact on the model. This work is also the only one that equalizes the data between

positive and negative for COVID-19 tests. Although the real world is not equalized,

evaluating models with balanced data is important to eliminate possibly biased results. In

addition, this work also analyzes the influence of signs and symptoms on the result

generated by the machine learning model through explainable and Shapley techniques.

Methods
Machine Learning algorithms in Data Mining extract insights by evaluating,

preprocessing, and optimizing databases, including organizing, identifying outliers,

normalizing, and selecting variables. The methodology in this study comprises three

phases: data acquisition, preprocessing and application, and analysis of classification

results using Machine Learning (3).

Five algorithms were chosen: Random Forrest, Multi-Layer Perceptron, XGBoost,

Logistic Regression, and the Shapley Additive Explanation. They were selected to predict

COVID-19, considering the specifics of each wave, and for explainable analysis. The

selection allows the exploration of both linear and nonlinear characteristics of the

database, examining each algorithm individually and in an ensemble.

Random Forest (RF) is an ensemble decision tree algorithm that combines multiple

classifiers by using bootstrap aggregating (bagging) to reduce variance while maintaining

bias (9). To mitigate the correlation between decision trees, Breiman (10) introduced random

attribute selection for tree construction, decreasing the correlation among trees.

Multi-Layer Perceptron (MLP) constructs Neural Networks (NN) inspired by

biological neurons, learning input-output relationships by adjusting synaptic weights based
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on errors during supervised learning (11). In turn, Logistic regression generates a linear

model from input data to predict values of a categorical variable, typically binary (12). Finally,

Shapley Additive Explanations, introduced by Lundberg and Lee,(13) interprets machine

learning model outputs by measuring each variable's contribution to the final result. This

approach is crucial for understanding models that lack intrinsic explainability.

All data used in this research refer to the COVID-19 tests carried out at the Piquet

Carneiro Polyclinic, which is part of the health complex of the State University of Rio de

Janeiro. This study was conducted following ethical principles outlined in the Declaration of

Helsinki and was approved by the Pedro Ernesto University Hospital Ethical Committee

(CAAE: 30135320.0.0000.5259). Moreover, the software developed is registered with the

National Institute of Industrial Property through process number BR512023000197-0 and

is available for academic use.

The patients' self-described symptoms on the form were consolidated, and

laboratory tests considered for diagnosis included RT-PCR, Rapid Antibody Test

(RT-antibody), and Rapid Antigen Test (RT-antigen).

Results and Discussion
Initially, an analysis of the waves of contagion in the city of Rio de Janeiro was

conducted. The start and end dates of each wave were determined using open data

obtained from the Rio de Janeiro Municipal Health Department. The start and end dates

of the first wave were 03/18/2020 and 06/18/2020 and the start and end dates of the

second wave were 10/18/2020 and 2/18/2021. In turn, the start and end dates of the third

wave were 12/25/2021 and 2/25/2022.

After evaluation by health specialists, 19 prevalent signs and symptoms were

selected for the 1st and 2nd waves, and 19 for the 3rd wave (though not exactly the same

signs and symptoms). These 19 signs and symptoms were considered broadly,

encompassing even those with low representation in the database.
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Figure 1 illustrates the prevalence of 19 signs and symptoms in patients with

positive and negative results from the RT-PCR test during the 1st and 2nd waves (left graph)

and even displays the primary signs and symptoms reported by patients during the 3rd

wave (right graph), all tested with the Rapid Antigen, using nasal swab samples.
Figure 1 – Prevalence of the 19 signs and symptoms.

For a comprehensive analysis, data were categorized based on different waves and

types of tests (RT-PCR, RT-Antigen, and RT-antibody) used to diagnose patients as

positive or negative. This categorization yielded 10 datasets, listed in the first column of

Table 1, as in subsequent tables labeled "Data group".

Table 1 – Number of records for each database: using approximately 90% for training and
validation, and 10% for testing.

Data group Training and validation Test
1 - RT-PCR (1st wave + 2nd wave) 2436 272
2 - RT-PCR 1st wave 1228 138
3 - RT-PCR 2nd wave 839 93
4 - RT-antigens 3rd wave 1080 120
5 - RT-antibody (1st wave + 2nd wav) 1990 222
6 - RT-antibody 1st wave 1748 196
7 - RT-antibody 2nd wave 67 9
8 - RT-PCR + RT-antibody (1st wave + 2nd
wave)

4426 494

9 - RT-PCR + RT-antibody 1st wave 2926 332
10 - RT-PCR + RT-antibody 2nd wave 769 87
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The patient records with signs and symptoms related to different test types

(RT-PCR, RT-antibody, and RT-antigen) and their results (negative and positive) across

the first, second, and third waves were imbalanced. To ensure unbiased model

performance, data equalization was conducted by randomly undersampling the class with

the higher number of records to achieve balance. Symptoms reported during the waves

were encoded as binary attributes (“1” for presence, “0” for absence), as was the diagnosis

column (“1” for positive test results, “0” for negative). Subsequently, approximately 10% of

positive and negative cases were set aside as a test set, while the remainder was

allocated for model training and validation. This procedure was applied to all datasets, with

Table 1 displaying the data distribution for each phase (i.e., Training and Validation or

Test).

A thorough attribute evaluation was conducted individually for each dataset. A

sensitivity analysis type evaluation was performed, involving the removal of each sign and

symptom to assess the impact on model performance. This analysis, restricted to data

groups 2, 3, and 4, involved sequentially removing attributes and evaluating the

improvement in validation results. Through exploratory analysis, variable selection, and

optimization of hyperparameters using a search grid, the most effective signs and

symptoms for enhancing models were identified. This attribute selection process was

integrated with a search for optimal hyperparameters using cross-validation, which divided

the dataset into 5 equal parts for training and validation. Models were trained on four parts

and validated on the fifth, repeated five times with each part used once for validation. The

model with the best average accuracy was selected for each dataset, with accuracy being

the primary metric, alongside precision, recall, F1, AUC, sensitivity, and specificity.

After assessing the impact of removing each remaining attribute individually, it was

determined that further removal of attributes from the databases was not appropriate

following the exclusion of "nasal congestion" and "chest pain" for the first and second

waves, and solely "chest pain" for the third wave. Interestingly, the signs and symptoms

that produced the best validation results were consistent for the first and second waves,
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whereas, for the third wave, certain signs and symptoms aiding the model's classification

of SARS-CoV-2 infection differed.

Table 2 displays the best results achieved for the 10 datasets (Data group). Each

database had its hyperparameters determined through a search algorithm based on

validation metrics.

The MLP algorithm demonstrated slightly superior results for the RT-PCR 1st wave

(Data group 2) compared to RF and RL. In turn, RF and MLP algorithms exhibited similar

performance for the RT-PCR 2nd wave database (Data group 3), with RL showing superior

results for recall, F1, and AUC metrics. In turn, for RT-antigens 3rd wave (Data group 4),

RF and MLP algorithms produced nearly identical metrics, while RL displayed slightly

lower results.

Overall, RL outperformed RF and MLP algorithms across all RT-antibody bases

(Data groups 5, 6, and 7), particularly achieving 64% accuracy for the base corresponding

to patients in the second wave (Data group 7). However, it's essential to note the limited

data available for this base, which may have influenced the outcome.

Table 2 – Metrics - average validation errors.
Method Data group #records Accuracy Precision Recall F1 AUC

RF

1 2852 0.65 0.67 0.60 0.63 0.70
2 1228 0.62 0.61 0.53 0.57 0.66
3 839 0.70 0.70 0.64 0.67 0.71
4 1080 0.67 0.67 0.65 0.66 0.68
5 1990 0.64 0.64 0.53 0.58 0.65
6 1748 0.64 0.64 0.48 0.55 0.65
7 67 0.64 0.64 0.67 0.66 0.66
8 4426 0.65 0.67 0.59 0.62 0.68
9 2956 0.62 0.64 0.54 0.58 0.66
10 769 0.69 0.70 0.67 0.68 0.72

MLP

1 2852 0.65 0.67 0.60 0.63 0.70
2 1228 0.62 0.62 0.61 0.62 0.65
3 839 0.69 0.70 0.64 0.67 0.71
4 1080 0.66 0.66 0.68 0.66 0.68
5 1990 0.64 0.65 0.59 0.62 0.66
6 1748 0.61 0.66 0.47 0.55 0.65
7 67 0.62 0.66 0.47 0.55 0.64
8 4426 0.67 0.65 0.67 0.67 0.68
9 2956 0.68 0.65 0.68 0.68 0.65
10 769 0.68 0.66 0.68 0.68 0.61

RL 1 2852 0.65 0.65 0.62 0.62 0.70
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2 1228 0.61 0.62 0.54 0.57 0.64
3 839 0.68 0.66 0.76 0.71 0.74
4 1080 0.65 0.66 0.61 0.64 0.68
5 1990 0.62 0.63 0.59 0.61 0.65
6 1748 0.61 0.64 0.51 0.56 0.64
7 67 0.57 0.65 0.50 0.53 0.51
8 4426 0.63 0.64 0.60 0.62 0.67
9 2956 0.61 0.66 0.43 0.52 0.64
10 769 0.66 0.67 0.66 0.66 0.72

The MLP algorithm demonstrated superior performance across all metrics when

considering the combined databases of patients tested by RT-PCR and RT-antibody,

except for the second wave where RF achieved the best outcome. Upon conducting the

Mann-Whitney test on the average accuracy values, p-values > 0.05 were obtained for

comparisons between MLP and RF, MLP and RL, and RF and RL, indicating that the

results are not significantly different.

Table 3 shows that the Random Forest model achieved 79% accuracy in the

RT-PCR 2nd wave dataset (data group 3) with 85% precision. Sensitivity and specificity

were 76% and 82% respectively, indicating its ability to correctly identify positive and

negative cases.

Table 3 – Metrics - average tests errors (Random Forrest).

Data group Accuracy Precision Recall F1 AUC Sensitivity Specificity
1 0.64 0.65 0.64 0.64 0.70 0.62 0.66
2 0.65 0.66 0.65 0.65 0.66 0.62 0.69
3 0.79 0.85 0.79 0.79 0.71 0.76 0.82
4 0.72 0.72 0.72 0.71 0.68 0.70 0.73
5 0.59 0.55 0.59 0.59 0.65 0.58 0.60
6 0.62 0.65 0.62 0.59 0.65 0.51 0.67
7 0.44 0.40 0.44 0.50 0.66 0.50 0.40
8 0.60 0.61 0.60 0.60 0.68 0.57 0.64
9 0.62 0.68 0.62 0.62 0.66 0.63 0.64
10 0.60 0.54 0.60 0.59 0.72 0.63 0.67

The exchange of test data between models trained with data from different waves

helped in identifying differences among datasets and evaluating their consistency.

Therefore, test data from the first symptomatic wave of SARS-CoV-2 were used in models

trained with second-wave and third-wave data. Likewise, test data from the second wave
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were used in models trained with first-wave and third-wave data. Also, test data from the

third wave were used in models trained with first-wave and second-wave data. The results

can be seen in Table 4, where the first line for each wave shows the results using data

from the same wave and the other two lines with distinct waves.

For all wave models, there is a decrease in sensitivity and recall when using test

data from other waves. In the 1st wave model, results from the second wave generally

outperform those from the first wave tests, sensitivity and recall are exceptions. The 2nd

wave model achieves excellent results with its own test set but performs less optimally

when tested with data from other waves. Notably, sensitivity and recall drop to 38% when

using third-wave data. The 3rd wave model's tests with first and second-wave datasets

reveal a significant decrease in most metrics compared to using its own data.

Table 4 –Wave models tested with data from1st, 2nd and 3rd wave test sets - RF.

Wave Data group Accuracy Precision Recal
l

F1 AUC Sensitivity Specificity

2 0.65 0.66 0.65 0.65 0.65 0.62 0.69
1st 3 0.70 0.71 0.58 0.70 0.69 0.58 0.80

4 0.61 0.61 0.40 0.61 0.59 0.40 0.78
3 0.79 0.85 0.79 0.79 0.79 0.76 0.82

2nd 2 0.62 0.61 0.60 0.62 0.62 0.60 0.65
4 0.62 0.64 0.38 0.62 0.60 0.38 0.81
4 0.72 0.72 0.70 0.72 0.71 0.70 0.73

3rd 2 0.58 0.58 0.46 0.58 0.58 0.46 0.70
3 0.63 0.62 0.51 0.63 0.62 0.51 0.74

Figures 2 display the SHAP distribution for each record in their respective datasets.

In these graphs, blue represents low values and red represents high values, with positive

red values indicating that the presence of the symptom aids in identifying symptomatic

infection by SARS-CoV-2. The distribution of points along the axis reveals their impact on

positive or negative classification.

The charts in Figure 2 show that for the best model, there is a difference in signs

and symptoms between the different waves. A significant difference in signs and

symptoms can be observed in the third wave in particular. Although fever remains the

primary indicator of virus presence, nasal congestion took second place in the third wave.
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Additionally, there was a change in the importance of other attributes; the higher they are

on the chart, the more they assist the model in classification.

Discussion

Data were analyzed and divided into waves. In addition to signs and symptoms,

other attributes were explored to improve the sensitivity and specificity of the models. The

gender attribute was irrelevant for predicting the outcome of symptomatic infection with the

SARS-CoV-2 virus. The information if the patient had contact with confirmed cases,

markedly worsened the results. Analyzing the data from the third wave forms, it can be

seen that many patients confirmed contact after a date after the onset of signs and

symptoms, indicating that contact was not the cause of the infection. Data such as place of

residence and age could not be used, as most patients did not fill in this information. In the

database for the third wave, there was already information about the vaccine. However, as

the vast majority of patients were vaccinated (97.5% vaccinated), it was not possible to

use this information as an attribute to assess this base specifically.

Figure 2 – Summary of effects of all attributes - RF - RT-PCR 1st wave
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It can be seen, through the results generated by the ML models, that the RT-PCR

exam is much superior in detecting symptomatic infection by the SARS-CoV-2 virus; this is

demonstrated by the metrics of the models when using the exams as labels separately.

The best result of the model that considered the RT-PCR exam used data from the second

wave, reaching 79%, 76%, and 82%, respectively of accuracy, and sensitivity specificity,

while the best model using the RT of Antibodies was 62% accuracy, with only 51%

sensitivity and 67% specificity, considering the data from the first wave. Another aspect

analyzed was the division into waves. The models were trained with data from the first and

second waves and data outside a specific wave, that is, the period between waves. In this

way, much more data is obtained; however, when mixing wave data, the models obtained

inferior results; this fact motivated the testing of the models by training and validating them

with data from a specific wave and testing with data from another wave, which was

presented in the results section.
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Conclusion
This study aimed to develop a methodology for diagnosing symptomatic

SARS-CoV-2 infection, assisting in patient triage and social distancing efforts. The models

enabled the identification of main signs and symptoms across different waves of infection.

Several models achieved over 70% accuracy, sensitivity, and specificity, indicating

successful achievement of the objectives. The methodology proved effective in studying

symptom prevalence across different infection waves. It was observed that using data from

the same wave improved model performance, suggesting that the Omicron variant may

have different symptom profiles. These models can aid in isolating potentially infected

patients more efficiently and affordably than traditional tests, with RT-PCR and RT Antigen

tests proving more reliable than RT antibody tests. Future work will involve gathering data

on variants and vaccines received to identify symptom patterns. This methodology may

also be applied to other diseases like Dengue or Zika, with the potential inclusion of

additional data types such as imaging or lab tests using multimodal approaches for

diagnosis and outcome investigation.
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