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ABSTRACT
Objective: To present the construction and initial characterization of  the Brazilian BDR-iD dataset of  fundus images for diabe-
tic retinopathy (DR) research, and to define deep learning baselines for DR grading, lesion segmentation, and lesion detection. 
DR is a major cause of  visual impairment in adults, and early diagnosis is critical; however, limited infrastructure and specialist 
availability restrict access, particularly in settings comparable to Brazil’s public health system. We collected and anonymized 
13,131 fundus images from a clinic in Pelotas, Brazil, acquired between 2012 and 2024. From this cohort, 150 images were 
selected and expert-annotated for DR presence and lesion findings, including microaneurysms, hemorrhages, and exudates. 
Models were evaluated on three tasks: DR severity grading, lesion segmentation, and lesion detection. For severity classifica-
tion, the best test-set baseline achieved an overall accuracy (OA) of  0.6667. Segmentation and detection showed more modest 
performance, reflecting the limited number of  annotated images, class imbalance, and the intrinsic difficulty of  microlesion 
annotation. The preliminary BDR-iD release is not intended for clinical deployment, but as a starting point toward larger and 
more standardized Brazilian datasets, providing a public resource and reference baselines for future national studies.

RESUMO
Objetivo: Apresentar a construção e a caracterização inicial do conjunto de dados brasileiro BDR-iD, com imagens de fundo 
para estudo da retinopatia diabética (RD), e definir linhas de base de aprendizado profundo para graduação da RD, segmen-
tação e detecção de lesões. A RD é uma causa relevante de perda visual em adultos e o diagnóstico precoce é crítico; porém, 
a falta de infraestrutura e de especialistas limita o acesso, especialmente em contextos semelhantes ao SUS. Foram coletadas 
e anonimizadas 13.131 imagens de uma clínica em Pelotas (Brasil), entre 2012 e 2024. Dentre elas, 150 foram selecionadas e 
anotadas por especialista quanto à presença de RD e de lesões, incluindo microaneurismas, hemorragias e exsudatos. Modelos 
foram avaliados em três tarefas: graduação da RD, segmentação de lesões e detecção de lesões. Na classificação de severidade, 
no conjunto de teste, a melhor linha de base atingiu acurácia global (OA) de 0,6667. Segmentação e detecção apresentaram 
desempenho mais modesto, refletindo poucas imagens anotadas, desbalanceamento de classes e a dificuldade intrínseca de 
anotar microlesões. O BDR-iD preliminar não deve ser usado para implantação clínica, mas como ponto de partida para bases 
brasileiras mais amplas e padronizadas, oferecendo um recurso público inicial e referenciais para estudos futuros.

RESUMEN
Objetivo: Presentamos la construcción y caracterización inicial del conjunto de datos brasileño BDR-iD, con imágenes de 
fondo de ojo para estudiar la retinopatía diabética (RD), y establecemos líneas base de aprendizaje profundo para graduación, 
segmentación y detección de lesiones. La RD causa pérdida visual en adultos y el diagnóstico temprano es clave; sin embargo, 
la falta de infraestructura y especialistas limita el acceso, especialmente en entornos similares al sistema público brasileño. Se 
recopilaron y anonimizaron 13.131 imágenes de una clínica en Pelotas (Brasil) entre 2012 y 2024. De ellas, 150 fueron seleccio-
nadas y anotadas por un especialista para presencia de RD y lesiones (microaneurismas, hemorragias y exudados). Los modelos 
se evaluaron en tres tareas. En severidad, la mejor línea base en el conjunto de prueba logró OA=0,6667. Segmentación y 
detección mostraron rendimiento más modesto por el bajo número de anotaciones, el desbalance de clases y la dificultad de 
anotar microlesiones. Esta versión preliminar no es para uso clínico, sino un punto de partida hacia conjuntos brasileños más 
amplios y estandarizados, con un recurso público y baselines para estudios futuros.
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INTRODUCTION

According to the International Council of  Ophthal-
mology(1), Diabetic Retinopathy (DR) is a major cause 
of  vision loss in working-age adults, affecting approxi-
mately one-third (34.6%) of  people with diabetes in the 
US, Europe, and Asia. The increasing global prevalence 
of  diabetes is expected to raise vision loss due to related 
complications. DR is a leading cause of  visual impair-
ment among individuals aged 20–74, and its diagnosis re-
lies on identifying retinal lesions, such as microaneurys-
ms (MA), hemorrhages (HE), soft exudates (SE), and 
hard exudates (EX)(2).

In Brazil, organizing DR screening and follow-up is 
particularly challenging because of  the country’s large 
territory, uneven distribution of  ophthalmologists, and 
high demand on the public health system (Sistema Único 
de Saúde – SUS). These constraints contribute to delays 
in diagnosis and treatment. Computer-aided diagnosis 
and deep learning (DL) models are therefore promising 
for supporting ophthalmologists and primary-care pro-
fessionals, enabling more scalable screening and helping 
prioritize higher-risk patients.

Medical image analysis is central to early DR detec-
tion: timely treatment can prevent vision loss(3). Howe-
ver, limited examination capacity and a global shortage 
of  ophthalmologists — especially in developing regions 
— remain key barriers(4). Although DL has shown strong 
potential for lesion detection and segmentation, progress 
is constrained by the scarcity of  publicly available, exper-
t-annotated fundus datasets. In Brazil, the lack of  high-
-quality, nationally representative datasets further limits 
the development and validation of  reliable DL systems. 
Building such datasets requires ethical approval, rigorous 
anonymization, and substantial expert annotation effort, 
but it is essential for transparency, reproducibility, and 
trust in AI-assisted medical decision-making.

In this context, this study aims to: (i) assemble and 
anonymize a preliminary Brazilian fundus dataset for 
DR analysis (BDR-iD); (ii) obtain expert lesion-level an-
notations for a subset spanning different DR stages; and 
(iii) benchmark state-of-the-art DL models for DR gra-
ding, lesion segmentation, and lesion detection. Rather 
than presenting a definitive clinical tool, we introduce 
BDR-iD as an initial public resource and provide baseli-
ne results to guide future DR research in Brazil.

METHODOLOGY

This work introduces the Brazilian Diabetic Reti-
nopathy Images Dataset (BDR-iD), built from 13,131 
anonymized fundus images collected at an ophthalmolo-

gy clinic in Pelotas, Brazil (2012–2024) using a 45° fiel-
d-of-view (FOV) Canon CX1 retinograph with a Canon 
BM7-0331 camera. Patients ranged from 0 to 99 years 
(mean age: 58 years), with 58.82% female and 41.18% 
male. Because lesion annotation is complex, expert la-
beling was limited to a curated subset: 150 images for 
DR grading/classification and 100 images for lesion 
detection and segmentation. The subset was obtained 
through quality filtering to remove low-resolution, dark, 
glare-affected, and blurred images, followed by manual 
exclusions. In total, 150 images were classified and/or 
annotated for DR grading, lesion semantic segmenta-
tion, and lesion detection.

Retinal lesions for image detection and segmentation 
include EX, SE, MA, and HE. The segmentation pro-
cess uses 100 images, of  which 38 show DR and were 
annotated at the pixel level. Table 1 lists the annotations 
for each lesion type in the BDR-iD dataset. The dataset 
includes three annotation types: image-level DR classi-
fication, pixel-level masks, and bounding boxes for le-
sions. Annotations were initially generated automatically 
and later validated by a medical expert. In this version, 
the EX and SE annotations were fully validated. 

Table 1 - Distribution of  annotated fundus lesions 
in the BDR-iD dataset for segmentation and detection 
tasks.

Lesions Quantity 
hard exudates 974 
hemorrhages 318 
soft exudates 17 

microaneurysms 307 
Total 1616 

Source: Prepared by the authors.

All annotated lesions were included to enable a com-
prehensive evaluation of  segmentation and detection. A 
specialist classified DR based on medical reports, yiel-
ding 88 DR cases, 54 healthy images, and eight images 
with an undefined DR stage. Lesion masks were initially 
generated by R2U-Net at 256×256×3 and then upsca-
led to the original resolution using Upscayl/Real-ESR-
GAN; edges were converted to polygons and exported 
as editable COCO annotations. These automatic labels 
were then manually validated and corrected in CVAT by 
a retina specialist, who also added missed lesions. Micro-
aneurysms require manual annotation because of  their 
very small size and may even require fluorescein angio-
graphy for reliable detection.

After validation, the dataset was finalized as a COCO 
instance-segmentation file and corresponding binary 
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masks for semantic segmentation, including bounding 
boxes and updated polygons. Building BDR-iD v1 was 
time-consuming and heavily dependent on expert valida-
tion, particularly for small lesions such as microaneurys-
ms and hemorrhages (14–136 µm). As a result, v1 re-
mains limited in the number of  images and small-lesion 
annotations; future releases will expand the dataset and 
improve segmentation and detection coverage. All v1 
annotations were produced by a single specialist, and 
future versions will include multiple graders to report 
inter-observer agreement (e.g., Kappa).

RESULTS AND DISCUSSION

The evaluation of  BDR-iD considered three com-
plementary computer vision tasks: DR grading, lesion 
segmentation, and lesion detection. Together, these 
experiments provide a baseline characterization of  the 
performance of  current deep learning models on this 
preliminary Brazilian dataset and highlight the main 
challenges for future work.

Deep learning models for DR grading
The dataset was randomly split into training (50%), 

validation (20%), and test (30%) sets (class distribution 
in Table 2). Training images were resized to 512×512 
and augmented with rotations (≤30°), horizontal/ver-
tical flips, ColorJitter (≤20% for brightness/contrast/

saturation/hue), and random cropping. Class imbalance 
was mitigated with a batch size of  16 and a Weighted 
Random Sampler. Models were trained for 200 epochs 
using Adam (lr=0.001).

Table 2 - Class distribution across the train, valida-
tion, and test sets in the DR classification task.

Split No 
DR 

Mild 
NPDR 

Moderate 
NPDR 

Severe 
NPDR 

PDR Un-
classi-
fiable 

Train 25 10 14 8 13 5 
Vali-

dation 
8 5 6 4 6 1 

Test 21 8 6 3 5 2 
Source: Prepared by the authors.

DR classification results are reported in Table 3(a) 
using per-class accuracy (No DR, Mild/Moderate/Se-
vere NPDR, PDR, Unclassifiable), Overall Accuracy 
(OA), Average Accuracy (AA), and Kappa. VGG-16(5), 
SwinTransformer, and SqueezeNet performed poorly: 
VGG-16 reached 27% accuracy for No DR with OA 
26.67%, AA 4.44%, and Kappa 0.0000 (near-random). 
SwinTransformer achieved 47% for No DR and 33% 
for PDR (AA 13.40%, Kappa 0.19). SqueezeNet reached 
44% for No DR and 50% for Severe NPDR, with OA 
40%. 

Table 3 - Results obtained in the classification for (a) the validation set and (b) the test set.
Models No DR Mild 

NPDR 
Mo-

derate 
NPDR 

Severe 
NPDR 

PDR Unclas-
sifiable 

OA AA Kappa 

VGG-16  0.2700 0.0000 0.0000 0.0000 0.0000 0.0000 0.2667 0.0444 0.0000 
ResNet-18  0.8600 0.6700 0.6700 0.4000 0.6200 0.0000 0.6333 0.5359 0.5461 
GoogLe-
Net  

0.8000 1.0000 0.6700 0.7500 0.5700 1.0000 0.7333 0.7980 0.6643 

Dense-
Net-121  

0.7300 0.0000 0.5000 0.3800 0.8000 0.0000 0.6000 0.4004 0.4958 

Efficient-
Net B0  

1.0000 1.0000 0.6700 0.0000 0.6200 0.0000 0.8000 0.5486 0.7461 

RegNet Y 
400MF  

1.0000 1.0000 0.5000 1.0000 0.6000 0.0000 0.7333 0.6833 0.6667 

Squeeze-
Net  

0.4400 0.0000 0.0000 0.5000 0.3000 0.0000 0.4000 0.2074 0.2151 

SwinTrans-
former  

0.4700 0.0000 0.0000 0.0000 0.3300 0.0000 0.3667 0.1340 0.1926 

(a)
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Models No DR Mild 
NPDR 

Mo-
derate 
NPDR 

Severe 
NPDR 

PDR Unclas-
sifiable 

OA AA Kappa 

VGG-16  0.4700 0.0000 0.0000 0.0000 0.0000 0.0000 0.4667 0.0778 0.0000 
Res-
Net-18  

0.7200 0.5000 0.5000 0.3300 0.4300 0.0000 0.6222 0.4143 0.4239 

GoogLe-
Net  

0.7800 0.5000 0.0000 0.1700 0.4000 0.0000 0.6000 0.3074 0.4048 

Dense-
Net-121  

0.7300 1.0000 0.3300 0.1200 0.4000 0.0000 0.4889 0.4309 0.2930 

Efficient-
Net B0  

0.7900 0.5700 0.6000 0.3300 0.4000 0.0000 0.6444 0.4494 0.4853 

RegNet Y 
400MF  

0.8300 0.4500 0.3300 0.5000 0.6700 0.0000 0.6667 0.4634 0.5179 

Squeeze-
Net  

0.6000 0.0000 0.0000 0.0000 0.2100 0.0000 0.3556 0.1351 0.1265 

Swin-
Transfor-
mer  

0.5000 0.0000 0.0000 0.0000 0.1700 0.0000 0.2889 0.1111 0.0400

 (b)
Source: Prepared by the authors. 

DenseNet-121 and ResNet-18 achieved median re-
sults: DenseNet-121 scored 73% accuracy for No DR 
and 80% for PDR, but struggled with Mild NPDR, 
achieving low accuracy for Moderate (50%) and Seve-
re NPDR (38%). Its OA was 60%, AA was 40%, and 
Kappa was 0.49, indicating moderate but inconsistent 
performance. ResNet-18 performed well in most classes, 
especially No DR (86%), Mild NPDR (67%), Moderate 

NPDR (67%), and PDR (62%), but poorly on Severe 
NPDR (40%), with OA 63.33%, AA 53.59%, and Kappa 
0.54, indicating a more reliable model that needs further 
tuning. 

Figure 1 shows the test-set confusion matrices for 
the evaluated architectures (VGG-16, ResNet-18(6), 
GoogLeNet(7), DenseNet-121(8), EfficientNet B0(9), 
RegNet Y 400MF(10), SqueezeNet(11), SwinTransfor-

Figure 1 - Confusion matrices of  the experiments performed on the test set of  the BDR-iD dataset.

Source: Prepared by the authors.
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The top classifiers were EfficientNet-B0, RegNe-
tY-400MF, and GoogLeNet. On the validation set, 
EfficientNet-B0 achieved 100% accuracy for No DR 
and Mild NPDR, moderate performance for Modera-
te NPDR (67%) and PDR (62%), but 0% for Severe 
NPDR, yielding OA = 0.80, AA = 54.86%, and Kappa 
= 0.74 (highest Kappa). RegNetY-400MF reached 100% 
for No DR, Mild NPDR, and Severe NPDR, with 50% 
for Moderate NPDR and 60% for PDR (OA = 0.7333, 
AA = 68.33%, Kappa = 0.67). GoogLeNet was more 
consistent across classes (OA = 0.7333, AA = 79.80%, 
Kappa = 0.66). Overall, GoogLeNet showed the most 
consistent class-wise performance, whereas RegNetY-
-400MF was more balanced in terms of  per-class accura-
cy distribution (Table 3(b)).

Despite these highlights, models generally underper-
formed on the test set, suggesting overfitting and limited 
generalization, especially for classes with few samples. 
In the final test-set comparison, RegNet Y 400MF and 
EfficientNet B0 remained the top performers, with Reg-
Net Y 400MF leading (OA 0.6667, AA 0.4634, Kappa 
0.5179) and showing relative robustness in PDR (0.67) 
and Severe NPDR (0.50), while EfficientNet B0 achie-
ved OA 0.6444 and Kappa 0.4853. The results undersco-
re the need for more data and improved preprocessing, 
particularly for intermediate classes.

Deep learning models for lesion segmentation
Models were trained for lesion segmentation with 

a batch size of  4 over 50 epochs on 256×256 inputs, 

using Adam (lr=0.001), ReLU in hidden layers, Sigmoid 
output, and ImageNet initialization. Data augmentation 
included horizontal/vertical flips, elastic transform, grid 
distortion, and optical distortion, generating five aug-
mented variants per training image to increase diversity 
and reduce overfitting.

Segmentation was evaluated on BDR-iD using pixel 
accuracy (Acc), sensitivity (recall), precision, Dice, and 
IoU, comparing U-Net(13), Attention U-Net(14), and R2U-
-Net(15) across hard exudates, hemorrhages, soft exuda-
tes, and microaneurysms (Table 4(a)). Although overall 
accuracy was high, it largely reflected background domi-
nance in this highly imbalanced setting; therefore, Dice, 
sensitivity, and precision provide a more informative 
assessment of  lesion overlap and detection behavior. 
Sensitivity varied substantially across models and lesions. 
Soft exudates and microaneurysms exhibited very low 
sensitivity, indicating frequent detection failures. For 
hard exudates, Attention U-Net achieved higher sensi-
tivity but lower precision (more false positives), whereas 
U-Net and R2U-Net provided a better sensitivity–preci-
sion trade-off. For hemorrhages, R2U-Net achieved the 
best Dice, but with low sensitivity.

Given the strong class imbalance, many images con-
tain no pixels for a given lesion class. In such cases, IoU 
may become undefined (union=0) and can be affected by 
the adopted convention. Therefore, we emphasize Dice/
recall/precision and recommend reporting IoU/Dice 
conditioned on positive ground-truth cases.

Table 4 - Results obtained from the segmentation for (a) the validation set and (b) the test set.
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Source: Prepared by the authors.

On the test set, accuracy remained high, yet sensitivity 
continued to depend on lesion type. R2U-Net delivered 
the best precision and Dice for hard exudates; Attention 
U-Net found more lesions but produced many false po-
sitives. For hemorrhages, R2U-Net showed high preci-
sion but low sensitivity, while Attention U-Net exhibited 
the opposite. For soft exudates and microaneurysms, all 
models maintained low sensitivity, underscoring the dif-
ficulty of  reliable segmentation with limited annotations.

Figure 2 - Comparison between the fundus lesion 
segmentations performed by the models with ground 
truth in images from the test set of  the BDR-iD dataset. 

Source: Prepared by the authors.
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Figure 2 presents a visual comparison of  fundus le-
sion segmentation results produced by different models 
on test-set images from the BDR-iD dataset. Figure 2(a) 
shows the original fundus image, while Figure 2(b) shows 
the ground-truth lesion mask. Figures 2(c), (d), and (e) 
display the predictions of  U-Net, Attention U-Net, and 
R2U-Net, respectively.

Deep learning models for lesion detection
Models were trained for lesion detection with batch 

size 8 over 50 epochs on 640×640 images, using early 
stopping (patience 15) and Rectified Adam (lr=0.001) 
with pre-trained YOLOv9, YOLOv10, and YOLOv11. 
Data augmentation (flips, distortions, brightness chan-
ges) produced five variants per training image to reduce 
overfitting. Performance was measured using mAP@50 
across four lesion classes (EX, HE, SE, MA).

YOLOv9 achieved intermediate performance (mAP 
0.3170), performing better on HE and SE but weaker on 
EX and MA. YOLOv10 was the weakest (mAP 0.1880) 
and failed to detect SE. YOLOv11 performed best 
(mAP 0.3460), excelling on SE (0.6670) and showing the 
most balanced results, though MA remained low. Du-
ring YOLOv11 training, losses decreased and precision/
recall improved, while mAP plateaued around 0.23, su-
ggesting a reasonable fit with room to improve. On the 
test set, YOLOv9’s mAP slightly decreased (-0.0210): 
EX detection improved, but HE and MA worsened, 
consistent with possible overfitting; SE performance re-
mained stable.

Table 5 - Results obtained in lesion detection when 
compared to models using the mAP@50 metrics in (a) 
the validation set and (b) the test set.

Models Yolov9  Yolov10  YOLOv11  
EX 0.0914 0.0967 0.1170 
HE 0.3990 0.3980 0.3790 
SE 0.5010 0.0000 0.6670 
MA 0.2780 0.2580 0.2220 
mAP 0.3170 0.1880 0.3460 

(a)

Models Yolov9  Yolov10  YOLOv11  
EX 0.2480 0.1530 0.2210 
HE 0.2460 0.3640 0.3560 
SE 0.5340 0.0000 0.7500 
MA 0.1560 0.2290 0.1980 
mAP 0.2960 0.1870 0.3810 

(b)
Source: Prepared by the authors.

The YOLOv10 model showed similar performance 
in validation and testing, indicating potential underfitting 
due to consistently low results. The primary concern is 
SE (0.0000), indicating that the model did not learn to 
detect this class. The detection of  HE (0.3640) and MA 
(0.2290) improved, yet remained below that of  other 
models. The decrease in EX detection (0.1530) suggests 
minimal learning during testing. The YOLOv11 model 
showed improvements on the test set, indicating enhan-
ced generalization ability. Its mAP increased from 0.3460 
to 0.3810 (Table 5(a) and (b), respectively), boosting its 
performance in detecting SE (0.7500) and refining its re-
presentation of  this class. However, it experienced a de-
crease in MA detection (0.1980), highlighting the model’s 
overall challenges.

Figure 3 illustrates lesion detection examples pro-
duced by YOLOv9, YOLOv10, and YOLOv11 on a 
BDR-iD fundus image. Although microlesion detection 
remains challenging, the models identified a substantial 
number of  lesions, indicating that BDR-iD can support 
training state-of-the-art deep learning systems for impro-
ved medical diagnosis.

Figure 3 - Fundus lesion detection performed by 
YOLOv9, YOLOv10, and YOLOv11 models on an ima-
ge from the test set of  the BDR-iD dataset.

Source: Prepared by the authors.

Across tasks, classification showed overfitting and li-
mited generalization, particularly when separating similar 
classes such as Moderate vs. Severe NPDR under data 
scarcity. In segmentation, a sensitivity–accuracy trade-o-
ff  emerged: Attention U-Net achieved higher sensitivity 
but generated many false positives, while R2U-Net achie-
ved higher accuracy but missed lesions. Soft exudates 
(SE) and microaneurysms (MA) consistently underper-
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formed due to low prevalence and annotation difficulty, 
and YOLO detectors faced similar constraints—espe-
cially YOLOv9, which appeared more prone to overfit-
ting—whereas YOLOv11 generalized better. The pro-
posed next steps are to expand the labeled set, improve 
effective image resolution, and fine-tune models to miti-
gate these limitations.

These results should be interpreted as baseline eviden-
ce, not as performance suitable for clinical deployment. 
Large-scale DR screening studies trained on extensive 
datasets report markedly higher performance. For instan-
ce, Gulshan et al. trained on over 120,000 EyePACS and 
Messidor-2 images and achieved sensitivities up to 97.5% 
with specificities above 93% for referable DR in external 
validation(16). Ting et al. similarly validated a system in 
multiethnic diabetic populations, reporting 90.5% sen-
sitivity and 91.6% specificity for referable DR(17). The-
se benchmarks contextualize the more modest results 
from BDR-iD v1, which are expected due to the small 
annotated subset, single-center data, and class imbalan-
ce (notably for microaneurysms and soft exudates). Mo-
reover, lesion-level annotation is inherently difficult and 
time-consuming, limiting label volume and quality. Thus, 
the findings primarily indicate the need to expand dataset 
size/diversity and refine annotation strategies, rather than 
reflecting insufficient model capacity. To ensure transpa-
rency and reproducibility, the BDR-iD dataset is publicly 
available in an open repository: https://github.com/car-
lossantos-iffar/BDR-iD-dataset.

CONCLUSION

This paper introduces the preliminary Brazilian Dia-
betic Retinopathy Images Dataset (BDR-iD), collected 
from a single ophthalmology clinic, and benchmarks its 
first release using deep learning for DR grading, lesion 
segmentation, and lesion detection. The results show that 
lesion-level tasks are substantially harder than DR gra-
ding and will require larger, more diverse sets of  exper-
t-annotated images. On the test set, RegNet Y 400MF 
achieved the best DR grading performance (overall accu-
racy 0.6667, average accuracy 0.4634, Kappa 0.5179). For 
lesion segmentation, R2U-Net produced the most balan-
ced results, while YOLOv11 achieved the best detection 
performance (mAP 0.3460 on validation and 0.3810 on 
testing). Although these metrics are moderate, they are 
expected given the limited sample size and lesion distri-
bution in BDR-iD v1 and should be interpreted as base-
line results.

Future work will expand BDR-iD with data from ad-
ditional Brazilian centers, increase expert-validated lesion 
annotations, and evaluate semi-supervised and self-su-

pervised methods to exploit the large pool of  unlabeled 
images. We will also assess classical supervised machine 
learning with handcrafted features as a potentially com-
petitive, lower-cost alternative on larger and more diver-
se datasets, supporting robust benchmarking and real-
-world deployment in Brazilian healthcare settings.
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