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ABSTRACT

Objective: To present the construction and initial characterization of the Brazilian BDR-iD dataset of fundus images for diabe-
tic retinopathy (DR) research, and to define deep learning baselines for DR grading, lesion segmentation, and lesion detection.
DR is a major cause of visual impairment in adults, and early diagnosis is critical; however, limited infrastructure and specialist
availability restrict access, particularly in settings comparable to Brazil’s public health system. We collected and anonymized
13,131 fundus images from a clinic in Pelotas, Brazil, acquired between 2012 and 2024. From this cohort, 150 images were
selected and expert-annotated for DR presence and lesion findings, including microaneurysms, hemorrhages, and exudates.
Models were evaluated on three tasks: DR severity grading, lesion segmentation, and lesion detection. For severity classifica-
tion, the best test-set baseline achieved an overall accuracy (OA) of 0.6667. Segmentation and detection showed more modest
performance, reflecting the limited number of annotated images, class imbalance, and the intrinsic difficulty of microlesion
annotation. The preliminary BDR-iD release is not intended for clinical deployment, but as a starting point toward larger and
more standardized Brazilian datasets, providing a public resource and reference baselines for future national studies.

RESUMO

Objetivo: Apresentar a construgio e a caracterizagio inicial do conjunto de dados brasileiro BDR-iD, com imagens de fundo
para estudo da retinopatia diabética (RD), e definir linhas de base de aprendizado profundo para graduacio da RD, segmen-
tacdo e deteccio de lesdes. A RD é uma causa relevante de perda visual em adultos e o diagnéstico precoce é critico; porém,
a falta de infraestrutura e de especialistas limita o acesso, especialmente em contextos semelhantes ao SUS. Foram coletadas
e anonimizadas 13.131 imagens de uma clinica em Pelotas (Brasil), entre 2012 e 2024. Dentre elas, 150 foram selecionadas e
anotadas por especialista quanto a presen¢a de RD e de lesoes, incluindo microaneurismas, hemorragias e exsudatos. Modelos
foram avaliados em trés tarefas: graduagio da RD, segmentacio de lesdes e deteccio de lesdes. Na classificacio de severidade,
no conjunto de teste, a melhor linha de base atingiu acuracia global (OA) de 0,6667. Segmentagao e detecgdo apresentaram
desempenho mais modesto, refletindo poucas imagens anotadas, desbalanceamento de classes e a dificuldade intrinseca de
anotar microlesdes. O BDR-iD preliminar nao deve ser usado para implantagio clinica, mas como ponto de partida para bases
brasileiras mais amplas e padronizadas, oferecendo um recurso publico inicial e referenciais para estudos futuros.

RESUMEN

Objetivo: Presentamos la construccion y caracterizacion inicial del conjunto de datos brasilefio BDR-iD, con imdgenes de
fondo de ojo para estudiar la retinopatia diabética (RD), y establecemos lineas base de aprendizaje profundo para graduacion,
segmentacion y deteccion de lesiones. La RD causa pérdida visual en adultos y el diagnéstico temprano es clave; sin embargo,
la falta de infraestructura y especialistas limita el acceso, especialmente en entornos similares al sistema publico brasilefio. Se
recopilaron y anonimizaron 13.131 iméagenes de una clinica en Pelotas (Brasil) entre 2012 y 2024. De ellas, 150 fueron seleccio-
nadas y anotadas por un especialista para presencia de RD y lesiones (microaneurismas, hemorragias y exudados). Los modelos
se evaluaron en tres tareas. En severidad, la mejor linea base en el conjunto de prueba logré OA=0,6667. Segmentacion y
deteccién mostraron rendimiento mds modesto por el bajo nimero de anotaciones, el desbalance de clases y la dificultad de
anotar microlesiones. Esta version preliminar no es para uso clinico, sino un punto de partida hacia conjuntos brasilefios mas
amplios y estandarizados, con un recurso publico y baselines para estudios futuros.
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INTRODUCTION

According to the International Council of Ophthal-
mology", Diabetic Retinopathy (DR) is a major cause
of vision loss in working-age adults, affecting approxi-
mately one-third (34.6%) of people with diabetes in the
US, Europe, and Asia. The increasing global prevalence
of diabetes is expected to raise vision loss due to related
complications. DR is a leading cause of visual impair-
ment among individuals aged 20-74, and its diagnosis re-
lies on identifying retinal lesions, such as microaneurys-
ms (MA), hemorrhages (HE), soft exudates (SE), and
hard exudates (EX)®@.

In Brazil, organizing DR screening and follow-up is
particulatly challenging because of the country’s large
territory, uneven distribution of ophthalmologists, and
high demand on the public health system (Sistema Unico
de Satde — SUS). These constraints contribute to delays
in diagnosis and treatment. Computer-aided diagnosis
and deep learning (D) models are therefore promising
for supporting ophthalmologists and primary-care pro-
fessionals, enabling more scalable screening and helping
prioritize higher-risk patients.

Medical image analysis is central to early DR detec-
tion: timely treatment can prevent vision loss®. Howe-
ver, limited examination capacity and a global shortage
of ophthalmologists — especially in developing regions
— remain key bartiers®. Although DL has shown strong
potential for lesion detection and segmentation, progress
is constrained by the scarcity of publicly available, exper-
t-annotated fundus datasets. In Brazil, the lack of high-
-quality, nationally representative datasets further limits
the development and validation of reliable DL systems.
Building such datasets requires ethical approval, rigorous
anonymization, and substantial expert annotation effort,
but it is essential for transparency, reproducibility, and
trust in Al-assisted medical decision-making.

In this context, this study aims to: (i) assemble and
anonymize a preliminary Brazilian fundus dataset for
DR analysis (BDR-1D); (if) obtain expert lesion-level an-
notations for a subset spanning different DR stages; and
(iii) benchmark state-of-the-art DL models for DR gra-
ding, lesion segmentation, and lesion detection. Rather
than presenting a definitive clinical tool, we introduce
BDR-iD as an initial public resource and provide baseli-
ne results to guide future DR research in Brazil.

METHODOLOGY
This work introduces the Brazilian Diabetic Reti-

nopathy Images Dataset (BDR-iD), built from 13,131
anonymized fundus images collected at an ophthalmolo-
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gy clinic in Pelotas, Brazil (2012-2024) using a 45° fiel-
d-of-view (FOV) Canon CX1 retinograph with a Canon
BM7-0331 camera. Patients ranged from 0 to 99 years
(mean age: 58 years), with 58.82% female and 41.18%
male. Because lesion annotation is complex, expert la-
beling was limited to a curated subset: 150 images for
DR grading/classification and 100 images for lesion
detection and segmentation. The subset was obtained
through quality filtering to remove low-resolution, dark,
glare-affected, and blurred images, followed by manual
exclusions. In total, 150 images were classified and/or
annotated for DR grading, lesion semantic segmenta-
tion, and lesion detection.

Retinal lesions for image detection and segmentation
include EX, SE, MA, and HE. The segmentation pro-
cess uses 100 images, of which 38 show DR and were
annotated at the pixel level. Table 1 lists the annotations
for each lesion type in the BDR-iD dataset. The dataset
includes three annotation types: image-level DR classi-
fication, pixel-level masks, and bounding boxes for le-
sions. Annotations were initially generated automatically
and later validated by a medical expert. In this version,
the EX and SE annotations were fully validated.

Table 1 - Distribution of annotated fundus lesions
in the BDR-D dataset for segmentation and detection
tasks.

Lesions Quantity
hard exudates 974
hemorrhages 318
soft exudates 17
microaneurysms 307
Total 1616

Source: Prepared by the authors.

All annotated lesions were included to enable a com-
prehensive evaluation of segmentation and detection. A
specialist classified DR based on medical reports, yiel-
ding 88 DR cases, 54 healthy images, and eight images
with an undefined DR stage. Lesion masks were initially
generated by R2U-Net at 256X256%3 and then upsca-
led to the original resolution using Upscayl/Real-ESR-
GAN; edges were converted to polygons and exported
as editable COCO annotations. These automatic labels
were then manually validated and corrected in CVAT by
a retina specialist, who also added missed lesions. Micro-
aneurysms require manual annotation because of their
very small size and may even require fluorescein angio-
graphy for reliable detection.

After validation, the dataset was finalized as a COCO
instance-segmentation file and corresponding binary
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masks for semantic segmentation, including bounding
boxes and updated polygons. Building BDR-iD v1 was
time-consuming and heavily dependent on expert valida-
tion, particulatly for small lesions such as microaneurys-
ms and hemorrhages (14136 pm). As a result, v1 re-
mains limited in the number of images and small-lesion
annotations; future releases will expand the dataset and
improve segmentation and detection coverage. All v1
annotations were produced by a single specialist, and
future versions will include multiple graders to report
inter-observer agreement (e.g., Kappa).

RESULTS AND DISCUSSION

The evaluation of BDR-iD considered three com-
plementary computer vision tasks: DR grading, lesion
segmentation, and lesion detection. Together, these
experiments provide a baseline characterization of the
performance of current deep learning models on this
preliminary Brazilian dataset and highlight the main
challenges for future work.

Deep learning models for DR grading

The dataset was randomly split into training (50%),
validation (20%), and test (30%) sets (class distribution
in Table 2). Training images were resized to 512X512
and augmented with rotations (<30°), hotizontal/ver-
tical flips, Colot]itter (£20% for brightness/contrast/

3

saturation/hue), and random cropping. Class imbalance
was mitigated with a batch size of 16 and a Weighted
Random Sampler. Models were trained for 200 epochs
using Adam (Ir=0.001).

Table 2 - Class distribution across the train, valida-
tion, and test sets in the DR classification task.

Split | No | Mild | Moderate | Severe [ PDR | Un-
DR |NPDR | NPDR | NPDR classi-
fiable
Train | 25 10 14 8 13 5
Vali- | 8 5 6 4 6 1
dation
Test | 21 8 6 3 5 2

Source: Prepared by the authors.

DR classification results are reported in Table 3(a)
using per-class accuracy (No DR, Mild/Moderate/Se-
vere NPDR, PDR, Unclassifiable), Overall Accuracy
(OA), Average Accuracy (AA), and Kappa. VGG-16(5),
SwinTransformer, and SqueezeNet performed poorly:
VGG-16 reached 27% accuracy for No DR with OA
26.67%, AA 4.44%, and Kappa 0.0000 (near-random).
SwinTransformer achieved 47% for No DR and 33%
for PDR (AA 13.40%, Kappa 0.19). SqueezeNet reached
44% for No DR and 50% for Severe NPDR, with OA
40%.

Table 3 - Results obtained in the classification for (a) the validation set and (b) the test set.

Models No DR Mild Mo- Severe PDR Unclas- OA AA Kappa
NPDR derate NPDR sifiable
NPDR

VGG-16 1 0.2700 0.0000 0.0000 0.0000 0.0000 0.0000 0.2667 0.0444 0.0000
ResNet-18 | 0.8600 0.6700 0.6700 0.4000 0.6200 0.0000 0.6333 0.5359 0.5461
Google- [0.8000 1.0000 0.6700 0.7500 0.5700 1.0000 0.7333 0.7980 0.6643
Net
Dense- 0.7300 0.0000 0.5000 0.3800 0.8000 0.0000 0.6000 0.4004 0.4958
Net-121
Efficient- | 1.0000 1.0000 0.6700 0.0000 0.6200 0.0000 0.8000 0.5486 0.7461
Net BO
RegNet Y | 1.0000 1.0000 0.5000 1.0000 0.6000 0.0000 0.7333 0.6833 0.6667
400MF
Squeeze- | 0.4400 0.0000 0.0000 0.5000 0.3000 0.0000 0.4000 0.2074 0.2151
Net
SwinTrans- | 0.4700 0.0000 0.0000 0.0000 0.3300 0.0000 0.3667 0.1340 0.1926
former

@)
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Models | No DR Mild Mo- Severe PDR Unclas- OA AA Kappa
NPDR derate NPDR sifiable
NPDR
VGG-16 | 0.4700 0.0000 0.0000 0.0000 0.0000 0.0000 0.4667 0.0778 0.0000
Res- 0.7200 0.5000 0.5000 0.3300 0.4300 0.0000 0.6222 0.4143 0.4239
Net-18
Google- |0.7800 0.5000 0.0000 0.1700 0.4000 0.0000 0.6000 0.3074 0.4048
Net
Dense- 0.7300 1.0000 0.3300 0.1200 0.4000 0.0000 0.4889 0.4309 0.2930
Net-121
Efficient- | 0.7900 0.5700 0.6000 0.3300 0.4000 0.0000 0.6444 0.4494 0.4853
Net BO
RegNet Y | 0.8300 0.4500 0.3300 0.5000 0.6700 0.0000 0.6667 0.4634 0.5179
400MF
Squeeze- | 0.6000 0.0000 0.0000 0.0000 0.2100 0.0000 0.3556 0.1351 0.1265
Net
Swin- 0.5000 0.0000 0.0000 0.0000 0.1700 0.0000 0.2889 0.1111 0.0400
Transfor-
mer

(b)

Source: Prepared by the authors.

DenseNet-121 and ResNet-18 achieved median re-
sults: DenseNet-121 scored 73% accuracy for No DR
and 80% for PDR, but struggled with Mild NPDR,
achieving low accuracy for Moderate (50%) and Seve-
re NPDR (38%). Its OA was 60%, AA was 40%, and
Kappa was 0.49, indicating moderate but inconsistent
performance. ResNet-18 performed well in most classes,

especially No DR (86%), Mild NPDR (67%), Moderate

NPDR (67%), and PDR (62%), but pootly on Severe
NPDR (40%), with OA 63.33%, AA 53.59%, and Kappa
0.54, indicating a more reliable model that needs further
tuning.

Figure 1 shows the test-set confusion matrices for
the evaluated architectures (VGG-16, ResNet-18(6),
GooglLeNet(7), DenseNet-121(8), EfficientNet B0(9),
RegNet Y 400MFE(10), SqueezeNet(11), SwinTransfor-

Figure 1 - Confusion matrices of the experiments performed on the test set of the BDR-iD dataset.

(a) VGG-18 (b) ResNet-18

(e) EfficientNet BO
Source: Prepared by the authors.

(f) RegNet Y 400MF

(c) GoogleLeNet (d) DenseNet-121
(g) SqueezeNet (h) SwinTransformer
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The top classifiers were EfficientNet-B0, RegNe-
tY-400ME, and GoogleNet. On the validation set,
EffioentNet-BO achieved 100% accuracy for No DR
and Mild NPDR, moderate performance for Modera-
te NPDR (67%) and PDR (62%), but 0% for Severe
NPDR, yielding OA = 0.80, AA = 54.86%, and Kappa
= 0.74 (highest Kappa). RegNetY-400MF reached 100%
for No DR, Mild NPDR, and Severe NPDR, with 50%
for Moderate NPDR and 60% for PDR (OA = 0.7333,
AA = 68.33%, Kappa = 0.67). Googl.eNet was more
consistent across classes (OA = 0.7333, AA = 79.80%,
Kappa = 0.66). Overall, Googl.eNet showed the most
consistent class-wise performance, whereas RegNetY-
-400MF was more balanced in terms of per-class accura-
cy distribution (Table 3(b)).

Despite these highlights, models generally underper-
formed on the test set, suggesting overfitting and limited
generalization, especially for classes with few samples.
In the final test-set comparison, RegNet Y 400MF and
EfficientNet B0 remained the top performers, with Reg-
Net Y 400MF leading (OA 0.6667, AA 0.4634, Kappa
0.5179) and showing relative robustness in PDR (0.67)
and Severe NPDR (0.50), while EfficientNet BO achie-
ved OA 0.6444 and Kappa 0.4853. The results undersco-
re the need for more data and improved preprocessing,
particularly for intermediate classes.

Deep learning models for lesion segmentation
Models were trained for lesion segmentation with
a batch size of 4 over 50 epochs on 256X256 inputs,

5

using Adam (Ir=0.001), ReL.U in hidden layers, Sigmoid
output, and ImageNet initialization. Data augmentation
included horizontal/vertical flips, elastic transform, grid
distortion, and optical distortion, generating five aug-
mented variants per training image to increase diversity
and reduce overfitting,

Segmentation was evaluated on BDR-iD using pixel
accuracy (Acc), sensitivity (recall), precision, Dice, and
IoU, comparing U-Net"?, Attention U-Net"?, and R2U-
-Net!" across hard exudates, hemorrhages, soft exuda-
tes, and microaneurysms (Table 4(a)). Although overall
accuracy was high, it largely reflected background domi-
nance in this highly imbalanced setting; therefore, Dice,
sensitivity, and precision provide a more informative
assessment of lesion overlap and detection behavior.
Sensitivity varied substantially across models and lesions.
Soft exudates and microaneurysms exhibited very low
sensitivity, indicating frequent detection failures. For
hard exudates, Attention U-Net achieved higher sensi-
tivity but lower precision (more false positives), whereas
U-Net and R2U-Net provided a better sensitivity—preci-
sion trade-off. For hemorrhages, R2U-Net achieved the
best Dice, but with low sensitivity.

Given the strong class imbalance, many images con-
tain no pixels for a given lesion class. In such cases, IoU
may become undefined (union=0) and can be affected by
the adopted convention. Therefore, we emphasize Dice/
recall/precision and recommend reporting IoU/Dice
conditioned on positive ground-truth cases.

Table 4 - Results obtained from the segmentation for (a) the validation set and (b) the test set.
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EX HE
Models Acc Sen Pre (D] loU Acc Sen Pre bC loU
U-Net 0.9973(0.3902| 0.2806| 0.2226| 0.8701 |0.9997| 0.0387 |0.5000| 0.0520 0.9032
Attention U-net | 0.9763| 0.8003| 0.0145| 0.0257( 06174 |0.9993| 0.4651 |0.1259| 0.1107 0.6775
R2U-Net 0.9898( 0.3201| 0.3925| 0.2100| 0.8666 |0.9997| 0.3004 |0.4907| 0.2229 0.8757
SE MA
Models Acc Sen Pre DC loU Acc Sen Pre DC loU
U-Net 0.9995( 0.0000| 0.0000| 0.0000| 0.8997 |0.9999| 0.1214 |0.3750| 0.1445 0.9111
Attention U-net | 0.9989| 0.0022 | 0.0057 | 0.0008( 0.8745 |0.9999| 0.0000 | 0.0000| 0.0000 0.9249
R2U-Net 0.9995( 0.0968| 0.1557| 0.0292| 0.8524 |0.9999| 0.1456 |0.5411| 0.1751 09117
(a)
EX HE
Models Acc Sen Pre DC loU Acc Sen Pre oG loU
U-Net 0.9958 | 0.3701| 0.3875| 0.2484 | 0.7902| 0.9988 | 0.0406 | 0.4536 | 0.0515 | 0.8376
Attention U-net | 0.9675 [ 0.7207| 0.0523| 00722 |0.6000( 0.9986 | 0.3894 | 0.1784 | 0.1433 | 0.6979
R2U-Net 0.9959 | 0.3841| 04706 | 0.2899 |0.8245| 0.9989 | 0.0861| 0.7463 | 0.1188 | 0.8460
SE MA
Models Acc Sen Pre DC loU Acc Sen Pre DC loU
U-Net 0.9999 | 0.2765| 0.4814 | 0.2148 | 0.9713| 0.9998 | 0.0857| 0.2301 | 0.0632 | 0.8182
Attention U-net | 0.9999 | 0.0638| 1.0000| 0.1200 |0.9844( 0.9998 [ 0.0035| 0.2222 | 0.0060 | 0.8499
R2U-Net 0.9998 | 0.0000| 0.0000| 0.0000 |0.9166| 0.9998 | 0.0762| 0.3154 | 0.0901 | 0.8261

Source: Prepared by the authors.

On the test set, accuracy remained high, yet sensitivity
continued to depend on lesion type. R2U-Net delivered
the best precision and Dice for hard exudates; Attention
U-Net found more lesions but produced many false po-
sitives. For hemorrhages, R2U-Net showed high preci-
sion but low sensitivity, while Attention U-Net exhibited
the opposite. For soft exudates and microaneurysms, all
models maintained low sensitivity, underscoring the dif-
ficulty of reliable segmentation with limited annotations.

Figure 2 - Comparison between the fundus lesion
segmentations performed by the models with ground
truth in images from the test set of the BDR-iD dataset.

Source: Prepared by the authors.
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Figure 2 presents a visual comparison of fundus le-
sion segmentation results produced by different models
on test-set images from the BDR-iD dataset. Figure 2(a)
shows the original fundus image, while Figure 2(b) shows
the ground-truth lesion mask. Figures 2(c), (d), and (e)
display the predictions of U-Net, Attention U-Net, and
R2U-Net, respectively.

Deep learning models for lesion detection

Models were trained for lesion detection with batch
size 8 over 50 epochs on 640%X640 images, using eatly
stopping (patience 15) and Rectified Adam (1r=0.001)
with pre-trained YOLOvVY9, YOLOv10, and YOLOv11.
Data augmentation (flips, distortions, brightness chan-
ges) produced five variants per training image to reduce
overfitting. Performance was measured using mAP@50
across four lesion classes (EX, HE, SE, MA).

YOLOVY achieved intermediate performance (mAP
0.3170), performing better on HE and SE but weaker on
EX and MA. YOLOv10 was the weakest (mAP 0.1880)
and failed to detect SE. YOLOv11 performed best
(mAP 0.3460), excelling on SE (0.6670) and showing the
most balanced results, though MA remained low. Du-
ting YOLOv11 training, losses decreased and precision/
recall improved, while mAP plateaued around 0.23, su-
ggesting a reasonable fit with room to improve. On the
test set, YOLOvY’s mAP slightly decreased (-0.0210):
EX detection improved, but HE and MA worsened,
consistent with possible overfitting; SE performance re-
mained stable.

Table 5 - Results obtained in lesion detection when
compared to models using the mAP@50 metrics in (a)
the validation set and (b) the test set.

Models Yolov9 Yolov10 YOLOv11
EX 0.0914 0.0967 0.1170
HE 0.3990 0.3980 0.3790
SE 0.5010 0.0000 0.6670
MA 0.2780 0.2580 0.2220
mAP 0.3170 0.1880 0.3460
@)
Models Yolov9 Yolov10 YOLOv11
EX 0.2480 0.1530 0.2210
HE 0.2460 0.3640 0.3560
SE 0.5340 0.0000 0.7500
MA 0.1560 0.2290 0.1980
mAP 0.2960 0.1870 0.3810

(b)

Source: Prepared by the authors.
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The YOLOv10 model showed similar performance
in validation and testing, indicating potential underfitting
due to consistently low results. The primary concern is
SE (0.0000), indicating that the model did not learn to
detect this class. The detection of HE (0.3640) and MA
(0.2290) improved, yet remained below that of other
models. The decrease in EX detection (0.1530) suggests
minimal learning during testing. The YOLOv11 model
showed improvements on the test set, indicating enhan-
ced generalization ability. Its mAP increased from 0.3460
to 0.3810 (Table 5(a) and (b), respectively), boosting its
performance in detecting SE (0.7500) and refining its re-
presentation of this class. However, it experienced a de-
crease in MA detection (0.1980), highlighting the model’s
overall challenges.

Figure 3 illustrates lesion detection examples pro-
duced by YOLOV9, YOLOv10, and YOLOvV11 on a
BDR-iD fundus image. Although microlesion detection
remains challenging, the models identified a substantial
number of lesions, indicating that BDR-iD can support
training state-of-the-art deep learning systems for impro-
ved medical diagnosis.

Figure 3 - Fundus lesion detection performed by
YOLOV9, YOLOvV10, and YOLOv11 models on an ima-
ge from the test set of the BDR-iD dataset.

Source: Prepared by the authors.

Across tasks, classification showed overfitting and li-
mited generalization, particularly when separating similar
classes such as Moderate vs. Severe NPDR under data
scarcity. In segmentation, a sensitivity—accuracy trade-o-
ff emerged: Attention U-Net achieved higher sensitivity
but generated many false positives, while R2U-Net achie-
ved higher accuracy but missed lesions. Soft exudates
(SE) and microaneurysms (MA) consistently underper-
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formed due to low prevalence and annotation difficulty,
and YOLO detectors faced similar constraints—espe-
cially YOLOV9, which appeared more prone to overfit-
ting—whereas YOLOv11 generalized better. The pro-
posed next steps are to expand the labeled set, improve
effective image resolution, and fine-tune models to miti-
gate these limitations.

These results should be interpreted as baseline eviden-
ce, not as performance suitable for clinical deployment.
Large-scale DR screening studies trained on extensive
datasets report markedly higher performance. For instan-
ce, Gulshan et al. trained on over 120,000 EyePACS and
Messidor-2 images and achieved sensitivities up to 97.5%
with specificities above 93% for referable DR in external
validation(16). Ting et al. similarly validated a system in
multiethnic diabetic populations, reporting 90.5% sen-
sitivity and 91.6% specificity for referable DR(17). The-
se benchmarks contextualize the more modest results
from BDR-iD v1, which are expected due to the small
annotated subset, single-center data, and class imbalan-
ce (notably for microaneurysms and soft exudates). Mo-
reover, lesion-level annotation is inherently difficult and
time-consuming, limiting label volume and quality. Thus,
the findings primarily indicate the need to expand dataset
size/diversity and refine annotation strategies, rather than
reflecting insufficient model capacity. To ensure transpa-
rency and reproducibility, the BDR-iD dataset is publicly
available in an open repository: https://github.com/cat-
lossantos-iffar/BDR-iD-dataset.

CONCLUSION

This paper introduces the preliminary Brazilian Dia-
betic Retinopathy Images Dataset (BDR-iD), collected
from a single ophthalmology clinic, and benchmarks its
first release using deep learning for DR grading, lesion
segmentation, and lesion detection. The results show that
lesion-level tasks are substantially harder than DR gra-
ding and will require larger, more diverse sets of exper-
t-annotated images. On the test set, RegNet Y 400MF
achieved the best DR grading performance (overall accu-
racy 0.6667, average accuracy 0.4634, Kappa 0.5179). For
lesion segmentation, R2ZU-Net produced the most balan-
ced results, while YOLOv11 achieved the best detection
performance (mAP 0.3460 on validation and 0.3810 on
testing). Although these metrics are moderate, they are
expected given the limited sample size and lesion distri-
bution in BDR-iD v1 and should be interpreted as base-
line results.

Future work will expand BDR-iD with data from ad-
ditional Brazilian centers, increase expert-validated lesion
annotations, and evaluate semi-supervised and self-su-

Santos C et al.

pervised methods to exploit the large pool of unlabeled
images. We will also assess classical supervised machine
learning with handcrafted features as a potentially com-
petitive, lower-cost alternative on larger and more diver-
se datasets, supporting robust benchmarking and real-
-world deployment in Brazilian healthcare settings.
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