Caracterização e Classificação de Conjuntos Desbalanceados de Dermoscopias

Autores

  • Newton Spolaôr Universidade Estadual do Oeste do Paraná
  • Huei Diana Lee Universidade Estadual do Oeste do Paraná
  • Weber Shoity Resende Takaki Universidade Estadual do Oeste do Paraná
  • Leandro Augusto Ensina Universidade Estadual do Oeste do Paraná
  • Antonio Rafael Sabino Parmezan Universidade Estadual do Oeste do Paraná
  • Matheus Maciel Universidade Estadual do Oeste do Paraná
  • Claudio Saddy Rodrigues Coy Universidade Estadual de Campinas
  • Feng Chung Wu Universidade Estadual do Oeste do Paraná

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1085

Palavras-chave:

Neoplasias Cutâneas, Informática Médica, Inteligência Artificial

Resumo

Objetivo: Investigar técnicas de inteligência computacional para caracterizar e classificar conjuntos desbalanceados de lesões dermoscópicas. Métodos: O método desenvolvido contempla técnicas para pré-processamento de imagens, extração de atributos (características), sobreamostragem, seleção de atributos, e construção e avaliação de classificadores. Vinte configurações do método foram avaliadas em 274 dermoscopias públicas com 48 melanomas e 226 nevos. Resultados: Atingiu-se a maior acurácia média, 83,57%, após reduzir o número de características em pelo menos 48,86%. Em geral, a sobreamostragem melhorou a sensitividade média. Conclusão: Os melhores resultados do método na caracterização e classificação de um conjunto desbalanceado de dermoscopias foram promissores e competitivos com algumas referências recentes.

Downloads

Não há dados estatísticos.

Biografia do Autor

Newton Spolaôr, Universidade Estadual do Oeste do Paraná

Doutor, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Huei Diana Lee, Universidade Estadual do Oeste do Paraná

Professora Associada-III Doutora do Centro de Engenharias e Ciências Exatas, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Weber Shoity Resende Takaki, Universidade Estadual do Oeste do Paraná

Doutor, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Leandro Augusto Ensina, Universidade Estadual do Oeste do Paraná

Mestre, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Antonio Rafael Sabino Parmezan, Universidade Estadual do Oeste do Paraná

Doutor, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Matheus Maciel, Universidade Estadual do Oeste do Paraná

Bacharel, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil.

Claudio Saddy Rodrigues Coy, Universidade Estadual de Campinas

Professor Titular Doutor da Faculdade de Ciências Médicas, Universidade Estadual de Campinas – FCM/UNICAMP, Campinas (SP), Brasil.

Feng Chung Wu, Universidade Estadual do Oeste do Paraná

Professor Associado-III Doutor do Centro de Educação, Letras e Saúde, Laboratório de Bioinformática, Universidade Estadual do Oeste do Paraná – LABI/UNIOESTE, Foz do Iguaçu (PR), Brasil. Professor Doutor da Faculdade de Ciências Médicas, Universidade Estadual de Campinas – FCM/UNICAMP, Campinas (SP), Brasil.

Referências

Bansal P, Garg R, Soni P. Detection of melanoma in dermoscopic images by integrating features extracted using handcrafted and deep learning models. Comput Ind Eng. 2022;168:108060.

Kaur R, GholamHosseini H, Sinha R. Hairlines removal and low contrast enhancement of melanoma skin images using convolutional neural network with aggregation of contextual information. Biomed Signal Process Control. 2022;76:103653.

Pathan S, Ali T, Vincent S, Nanjappa Y, David RM, Kumar OP. A dermoscopic inspired system for localization and malignancy classification of melanocytic lesions. Appl Sci (Basel). 2022;12(9):4243.

Popecki P, Jurczyszyn K, Ziętek M, Kozakiewicz M. Texture analysis in diagnosing skin pigmented lesions in normal and polarized light - a preliminary report. J Clin Med. 2022 Apr 29;11(9):2505.

Alazzam MB, Alassery F, Almulihi A. Diagnosis of melanoma using deep learning. Math Probl Eng. 2021;2021:1423605.

Javaid A, Sadiq M, Akram F. Skin cancer classification using image processing and machine learning. In: Zafar-Uz-Zaman M, Siddiqui NA, Iqbal M, et al., editors. Proceedings of the 18th International Bhurban Conference on Applied Sciences and Technologies; 2021; Islamabad, Pakistan. [New York]: Curran Associates; 2021. p. 439-44.

Valdés-Morales KL, Peralta-Pedrero ML, Cruz FJ, Morales-Sánchez MA. Diagnostic accuracy of dermoscopy of actinic keratosis: a systematic review. Dermatol Pract Concept. 2020;10(4):e2020121.

Lee HD, Mendes AI, Spolaôr N, Oliva JT, Sabino Parmezan AR, Chung WF, et al. Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines. Knowl-Based Syst. 2018;158:9-24.

Instituto Nacional de Câncer (BR). Estimativa 2020: incidência de câncer no Brasil [Internet]. Rio de Janeiro: Instituto Nacional de Câncer; 2019 [cited 2022 Jul 13]. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf.

Chollet F, Allaire JJ. Deep learning in R. Shelter Island: Manning publications; 2018. 335 p.

Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. 4a. ed. Burlington: Morgan Kaufmann; 2016. 654 p.

Liu H, Motoda H. Computational methods of feature selection. Boca Ratón: Chapman & Hall/CRC; 2007. 411 p.

Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16(1):321-57.

Grezzana APB, Lee HD, Spolaôr N, Wu FC. Extração e Seleção de Atributos para Processamento e Análise de Imagens Médicas. In: Pró-Reitoria de Pesquisa da Universidade de São Paulo, editor. Anais do Simpósio Internacional de Iniciação Científica e Tecnológica da USP; 2021; São Carlos, Brasil. São Paulo: Universidade de São Paulo; 2021. p. 1-1.

Grezzana APB, Lee HD, Spolaôr N, Wu FC. Segmentação, Caracterização e Classificação de Imagens Dermoscópicas Usando Seleção de Atributos. In: Comitê Assessor de Bolsas de Iniciação Científica da Universidade Estadual do Oeste do Paraná, editor. Anais do Encontro Anual de Iniciação Científica, Tecnológica e Inovação da Unioeste; 2021; Cascavel, Brasil. Cascavel: Universidade Estadual do Oeste do Paraná; 2021. p. 1-1.

Merck Sharp & Dohme. Nevos [Internet]. Rahway: Merck Sharp & Dohme; 2020 [cited 2022 Jul 13]. Available from: https://www.msdmanuals.com/pt-br/casa/dist%C3%BArbios-da-pele/tumores-cut%C3%A2neos-n%C3%A3o-cancerosos/nevos.

Kuhn M, Johnson K. Applied predictive modelling. New York: Springer; 2013. 613 p.

Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3(6):610-21.

Laws KI. Texture energy measures. In: Baumann LS, editor. Proceedings of the Defense Advanced Research Projects Agency Image Understanding Workshop; 1979; Los Angeles, United States. [Arlington]: Science Applications; [1979?]. p. 47-51.

Smit S, Hoefsloot HCJ, Smilde AK. Statistical data processing in clinical proteomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;866(1):77-88.

Carvalho VAM, Spolaôr N, Cherman EA, Monard MC. A Framework for Multi-label Exploratory Data Analysis: ML-EDA. In: Ezzatti P, Delgado A, editors. Proceedings of the Latin American Computing Conference; 2014; Montevidéu, Uruguai. [New York]: Curran Associates; 2014. p. 1-12.

Oliva JT, Lee HD, Spolaôr N, Coy CSR, Chung WF. Prototype system for feature extraction, classification and study of medical images. Expert Syst and Appl. 2016;63:267-83.

Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264-74.

Downloads

Publicado

20-07-2023

Como Citar

Spolaôr, N., Lee, H. D., Takaki, W. S. R., Ensina, L. A., Parmezan, A. R. S., Maciel, M., … Wu, F. C. (2023). Caracterização e Classificação de Conjuntos Desbalanceados de Dermoscopias. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1085

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.

Artigos mais lidos pelo mesmo(s) autor(es)