Multi-Classificação de Sinais de Eletroencefalograma, para Imaginação Motora, usando Processamentos Estatísticos de Sinais e Deep Learning

Autores

  • William Henrique Pereira Costa Universidade Federal de Itajubá
  • Luiz Eduardo Borges da Silva Universidade Federal de Itajubá

DOI:

https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1107

Palavras-chave:

Processamento de Sinais Digitais, Aprendizado Profundo, Imaginação

Resumo

Objetivos: A classificação dos sinais de eletroencefalograma (EEG) é a base para a construção de sistemas com interface cérebro-computador. Seu desenvolvimento depara-se com a complexidade dos sinais de EEG, que se diferem de sujeito para sujeito, tornando sua classificação complexa. Diante disso, esse trabalho visa comparar o desempenho de uma rede neural artificial utilizando diferentes técnicas de processamento de sinal, na classificação de um estado de repouso e dois estados de imaginação de movimento (IM). Métodos: Para esse trabalho, utilizou-se de três técnicas estatísticas de processamento de sinais e uma Rede Neural Convolucional. O banco de dados utilizado para a classificação consiste no registro de EEG de 109 voluntários, disponibilizado pela Physionet. Resultado e Conclusão: Observou-se que a Análise de Componentes Principais reduziu o custo computacional sem perda de desempenho na acurácia. Entretanto, a Análise de Componentes Independentes e a Análise Espectral Singular não obtiveram resultados promissores.

Downloads

Não há dados estatísticos.

Biografia do Autor

William Henrique Pereira Costa, Universidade Federal de Itajubá

Mestrando em Engenharia Elétrica, Instituto de Engenharia de Sistemas e Tecnologias da Informação, Universidade Federal de Itajubá – Itajubá, MG, Brasil.

Luiz Eduardo Borges da Silva, Universidade Federal de Itajubá

Doutor em Engenharia Elétrica, Instituto de Engenharia de Sistemas e Tecnologias da Informação, Universidade Federal de Itajubá – Itajubá, MG, Brasil.

Referências

Pfurtscheller G, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical neurophysiology. 1999 Nov 1;110(11):1842-57.

Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. ‘Thought’–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neuroscience letters. 2003 Nov 6;351(1):33-6.

Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. Journal of neural engineering. 2019 Apr 9;16(3):031001.

Kobayashi, T., Kuriki, S., Principal component elimination method for the improvement of S/N in evoked neuromagnetic field measurements. IEEE Transactions on Biomedical Engineering 46, 951-958.

Agarwal S, Zubair M. Classification of Alcoholic and Non-Alcoholic EEG Signals Based on Sliding-SSA and Independent Component Analysis. IEEE Sensors Journal. 2021 Oct 15;21(23):26198-206.

Hendrycks D, Gimpel K. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415. 2016 Jun 27.

Congedo M, Barachant A, Bhatia R. Riemannian geometry for EEG-based brain-computer interfaces; a primer and a review. Brain-Computer Interfaces. 2017 Jul 3;4(3):155-74.

Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. circulation. 2000 Jun 13;101(23):e215-20.

Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck C, Goj R, Jas M, Brooks T, Parkkonen L, Hämäläinen M. MEG and EEG data analysis with MNE-Python. Frontiers in neuroscience. 2013:267.

Loboda A, Margineanu A, Rotariu G, Lazar AM. Discrimination of EEG-based motor imagery tasks by means of a simple phase information method. International Journal of Advanced Research in Artificial Intelligence. 2014 Oct;3(10)..

Tangermann M, Müller KR, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Mueller-Putz G, Nolte G. Review of the BCI competition IV. Frontiers in neuroscience. 2012:55.

Pion-Tonachini L, Kreutz-Delgado K, Makeig S. The ICLabel dataset of electroencephalographic (EEG) independent component (IC) features. Data in brief. 2019 Aug 1;25:104101.

Pion-Tonachini L, Makeig S, Kreutz-Delgado K. Crowd labeling latent Dirichlet allocation. Knowledge and information systems. 2017 Dec;53(3):749-65.

SCCN. (n.d.). SCCN: Independent Component Labeling. Retrieved September 10, 2022, from https://labeling.ucsd.edu/tutorial/labels

Kai Ming Ting. 2011. Encyclopedia of machine learning. Springer. ISBN 978–0–387–30164–8.

Kim TK. Understanding one-way ANOVA using conceptual figures. Korean journal of anesthesiology. 2017 Feb 1;70(1):22-6.

Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. Journal of neural engineering. 2018 Jul 27;15(5):056013.

Downloads

Publicado

20-07-2023

Como Citar

Costa, W. H. P., & Silva, L. E. B. da. (2023). Multi-Classificação de Sinais de Eletroencefalograma, para Imaginação Motora, usando Processamentos Estatísticos de Sinais e Deep Learning. Journal of Health Informatics, 15(Especial). https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1107

Artigos Semelhantes

1 2 3 4 5 6 7 8 9 10 > >> 

Você também pode iniciar uma pesquisa avançada por similaridade para este artigo.