Application of ensemble method for classification of cardiac medical images

Authors

DOI:

https://doi.org/10.59681/2175-4411.v17.2025.1207

Keywords:

machine learning, cardiomyopathies, magnetic resonance imaging, cine

Abstract

Heart diseases are responsible for approximately 17 million deaths worldwide, according to the World Health Organization. This scenario has led to an increased demand for preventive medical care, resulting in a higher number of cardiac magnetic resonance imaging (MRI) exams. Identifying cardiomyopathies within this growing volume of exams poses a significant challenge for medical teams. To support this process, this study proposes a supervised machine learning methodology for the recognition of cardiomyopathies. The method takes into account different slices of the heart and the specific characteristics of the cardiac cycle, addressing limitations found in previous approaches. During the experiments, an accuracy of 80.00% and a precision of 82.26% were achieved in the best test case, which considers the structures of the epicardium and endocardium during the diastolic phase of the cardiac cycle. The results highlight the potential of the proposed approach in supporting medical diagnosis, especially in contexts of high exam demand.

Downloads

Download data is not yet available.

Author Biographies

Guilherme Ormond Sampaio, Centro Universitário FEI

Bacharel em Ciência da Computação pelo Centro Universitário FEI.

Leon Ferreira Bellini, Centro Universitário FEI

Bacharel em Ciência da Computação pelo Centro Universitário FEI.

Leila Cristina Carneiro Bergamasco, Centro Universitário FEI

Professora no Centro Universitário FEI.

References

World Health Organization (WOS). Cardiovascular diseases. [Internet]. 2021. [citado 2025 ago 13] Disponível em: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

Hanna TN, Zygmont ME, Peterson R, Theriot D, Shekhani H, Johnson JO, et al. The Effects of Fatigue From Overnight Shifts on Radiology Search Patterns and Diagnostic Performance. J Am Coll Radiol. 2018 Dec;15(12):1709-1716. doi: 10.1016/j.jacr.2017.12.019. Epub 2018 Feb 1. PMID: 29366599; PMCID: PMC6054573. DOI: https://doi.org/10.1016/j.jacr.2017.12.019

Simran V, Gupta A. Effective prediction of heart disease using data mining and machine learning: A review. In International Conference on Artificial Intelligence and Smart Systems (ICAIS); 2021. p. 249-253. DOI: https://doi.org/10.1109/ICAIS50930.2021.9395963

Bergamasco L. Recuperação de objetos médicos 3D utilizando harmônicos esféricos e redes de fluxo. Tese de Doutorado. São Paulo: Universidade de São Paulo (USP); 2018.

Ghosh P, Azam S, Jonkman M, Karim A, Shamrat F, Ignatious E, et al. Efficient Prediction of Cardiovascular Disease Using Machine Learning Algorithms With Relief and LASSO Feature Selection Techniques. 2021. IEEE Access, 9, 19304-19326. DOI: https://doi.org/10.1109/ACCESS.2021.3053759

Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M, et al. Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods. 2014; 222:230-237. DOI: https://doi.org/10.1016/j.jneumeth.2013.11.016

Moreno A, Rodriguez J, Martínez F. Regional Multiscale Motion Representation for Cardiac Disease Prediction. XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) 2019 (pp. 1-5). DOI: https://doi.org/10.1109/STSIVA.2019.8730231

Zhuang J, Cai J, Wang R, Zhang J, Zheng WS. Deep kNN for Medical Image Classification. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. 2020;127–36. DOI: https://doi.org/10.1007/978-3-030-59710-8_13

Norvig, Russel P, Artificial S. Intelligence. A modern approach. Vol. 90. Prentice Hall, 2020.

Raza K. Improving the prediction accuracy of heart disease with ensemble learning and majority voting rule [Internet]. ScienceDirect. Academic Press; 2019. p. 179–96. [citado 2025 ago 13] Disponível em: https://www.sciencedirect.com/science/article/abs/pii/B9780128153703000086 DOI: https://doi.org/10.1016/B978-0-12-815370-3.00008-6

Miao K, Miao J, Miao G. Diagnosing Coronary Heart Disease using Ensemble Machine Learning. International Journal of Advanced Computer Science and Applications. 2016;7(10). DOI: https://doi.org/10.14569/IJACSA.2016.071004

Fries JA, Varma P, Chin-Hung Chen V, Xiao K, Tejeda H, Saha P, et al. Weakly supervised classification of aortic valve malformations using unlabeled cardiac MRI sequences. Nature Communications. 2019 Jul 15;10(1). DOI: https://doi.org/10.1038/s41467-019-11012-3

Qayyum A, Anwar SM, Awais M, Majid M. Medical image retrieval using deep convolutional neural network. Neurocomputing. 2017 Nov;266:8–20. DOI: https://doi.org/10.1016/j.neucom.2017.05.025

Nasimov R, Nasimova N, Botirjon K; ABDULLAYEV, Munis. Deep Learning Algorithm for Classifying Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy in Transport Workers. Lecture Notes In Computer Science, [S.L.], p. 218-230, 2023. Springer Nature Switzerland. [citado 2025 ago 13] Disponível em: http://dx.doi.org/10.1007/978-3-031-30258-9_19. DOI: https://doi.org/10.1007/978-3-031-30258-9_19

Balaji GN, Subashini TS, Chidambaram N. Detection and diagnosis of dilated cardiomyopathy and hypertrophic cardiomyopathy using image processing techniques. Engineering Science And Technology, An International Journal, [S.L.], v. 19, n. 4, p. 1871-1880, dez. 2016. Elsevier BV. [citado 2025 ago 13] Disponível em: http://dx.doi.org/10.1016/j.jestch.2016.10.001. DOI: https://doi.org/10.1016/j.jestch.2016.10.001

Imagem ilustrativa de um coração, imagens cardíacas e medidores.

Published

2025-09-07

How to Cite

Sampaio, G. O., Bellini, L. F., & Bergamasco, L. C. C. (2025). Application of ensemble method for classification of cardiac medical images. Journal of Health Informatics, 17(1), 1207. https://doi.org/10.59681/2175-4411.v17.2025.1207

Issue

Section

Original Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.